If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-4n=55
We move all terms to the left:
3n^2-4n-(55)=0
a = 3; b = -4; c = -55;
Δ = b2-4ac
Δ = -42-4·3·(-55)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-26}{2*3}=\frac{-22}{6} =-3+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+26}{2*3}=\frac{30}{6} =5 $
| 16(4x)=16 | | 5/6=x/102 | | -(x+2)=x | | 3x+3=5x-7x | | -5x+3=3x-6 | | 6(d+4)=48 | | 4x+2=3=3x-1 | | 9x+50=12x-34 | | (y+3)(2y+7)=0 | | 7x+3=5x+54 | | 0,5x=18 | | x^2-4x-12=48 | | 11x+6=5x*54 | | -3/5h=9 | | 12x+2(2x)+3(x-1)=57,8 | | 7a-4a=6 | | R(2r-1)(r-1)(2r-3)=6006 | | 2x*(x-3)-(2x+1)*(x+3)=4 | | 2/³x=4 | | c^2-c+25=0 | | 13x-4+13x-4=180 | | +8x-3=5x-3+x | | 8y+7=7y-3 | | 9x+9=7x+45 | | 16×+4=15x+10 | | 6x+94+112=180 | | -3x+1=-2(4x+2 | | 18-3x-2=12x-x+5 | | 5(u+7)=2u+41 | | 7x+1=60 | | 3x+x+22=90 | | 3x+x+22=180 |